Nat Methods
时间:2024-07-09
基于测序空间转录组技术(sST)的快速发展改变了在空间背景下测量基因表达的能力,被Nature Methods评为2020年的年度技术【1,2】。这项技术是前沿生物研究关注的热点,有望从组织水平解析发育和疾病演进的规律,成为新的病理工具。近两年新的技术不断涌现,然而技术的发展应该关注哪些指标,如何对这些技术进行标准化的多维度评估和比较,尚未有清晰的解决方案【3】。sST通常涉及空间条形码的寡核苷酸,这些寡核苷酸以不同方式在微阵列、珠子、聚合物菌落(polonies)或纳米球上进行空间索引,或在微流控通道中进行空间索引。细胞释放的 mRNA 被局部捕获在每个位置中,这些位置包含具有相同空间条形码的寡核苷酸。斑点中心之间的距离经常作为重要的技术指标,被用作分辨率的衡量标准,然而其他的重要考虑因素,包括固定寡核苷酸捕获 mRNA 的效率以及分子扩散 在细胞透化后 mRNA 在水平位置移动的情况-在技术指标中常被忽视。
为了解决技术标准不清晰,评估方案混乱等问题,2024年7月4日,来自广州实验室和西湖大学的团队联合了墨尔本大学,哈佛大学研究者在Nature Methods上发表了研究论文Systematic comparison of sequencing-based spatial transcriptomic methods。他们对 11 种 sST 方法进行了全面比较(包括 10X Genomics Visium(基于 poly-A 和基于探针的两种方法)、DynaSpatial、HDST、BMKMANU S1000、Slide-seq V2、Curio Seeker(Slide-seq 的商业版本)、Slide-tag、Stereo-seq、PIXEL-seq、Salus 和 DBiT-seq)。他们使用具有明确形态的参考组织来评估它们的性能。研究建立了一套具有不同组织结构特征的标准参考组织,包括胚胎小鼠眼睛、成年小鼠海马区和嗅球。在进行统一的组织块制备和切片后,他们使用11种sST方法对这些组织进行了空间转录组学分析,生成了一个跨平台的数据集(称为cadasSTre),以便直接比较空间分辨率、分子捕获效率和分子扩散(图一)。